A Randomized Dynamic Program Analysis Technique for
Detecting Real Deadlocks

Pallavi Joshi Chang-Seo Park
Koushik Sen

EECS Department, UC Berkeley, USA
{pallavi,parkcs,ksen}@cs.berkeley.edu

Abstract

We present a novel dynamic analysis technique that findslezal-
locks in multi-threaded programs. Our technique runs ingtages.

In the first stage, we use an imprecise dynamic analysis igaofn
to find potential deadlocks in a multi-threaded program bseot-
ing an execution of the program. In the second stage, we aontr
a random thread scheduler to create the potential deadieitks
high probability. Unlike other dynamic analysis technigueur ap-
proach has the advantage that it does not give any false nggni
We have implemented the technique in a prototype tool foa,Jav
and have experimented on a number of large multi-threadeal Ja
programs. We report a number of previously known and unknown
real deadlocks that were found in these benchmarks.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.&pftware EngineerirjgSoft-
ware/Program Verification

General Terms Languages, Reliability, Verification

Keywords deadlock detection, dynamic program analysis, con-
currency

1. Introduction

A common cause for unresponsiveness in software systems is
deadlock situation. In shared-memory multi-threadedesyst a
deadlock is a liveness failure that happens when a set aidbre
blocks forever because each thread in the set is waiting 40 ac
quire a lock held by another thread in the set. Deadlock is a
common form of bug in today’s software—Sun’s bug database at
http://bugs. sun. conl shows that 6,500 bug reports out of
198,000 contain the keyword ‘deadlock’. There are a fewaess
for the existence of deadlock bugs in multi-threaded pnogra
First, software systems are often written by many prograrame
therefore, it becomes difficult to follow a lock order didaige that
could avoid deadlock. Second, programmers often introdeegl-
locks when they fix race conditions by adding new locks. Third
software systems can allow incorporation of third-partftveare
(e.g. plugins); third-party software may not follow the kowg dis-
cipline followed by the parent software and this sometinessilits

in deadlock bugs [17].

Deadlocks are often difficult to find during the testing phase
because they happen under very specific thread schedulesngo
up with these subtle thread schedules through stress gestin
random testing is often difficult. Model checking [15, 1114, 6]
removes these limitations of testing by systematicallyl@xpg
all thread schedules. However, model checking fails toestal

Permission to make digital or hard copies of all or part o thrk for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'09, June 15-20, 2009, Dublin, Ireland.
Copyright(© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

Mayur Naik

Intel Research, Berkeley, USA
mayur.naik@intel.com

large multi-threaded programs due to the exponential asén
the number of thread schedules with execution length.

Several program analysis techniques, both static [19, 19, 2
27, 29, 21] and dynamic [12, 13, 4, 1], have been developeé-to d
tect and predict deadlocks in multi-threaded programdicSech-
nigues often give no false negatives, but they often repanym
false positives. For example, the static deadlock deteigteeloped
by Williams et al. [29] reports 100,000 deadlocks in Sun'&kJD
1.4, out of which only 7 are real deadlocks. Type and annotation
based techniques [5, 10] help to avoid deadlocks duringngodi
but they impose the burden of annotation on programmerslidre
tive dynamic techniques such as Goodlock [13] and its improv
ments [4, 1] give both false negatives and false positivesekam-
ple, in our experiments we have found that an improved Gaddlo
can report as many as 254 false positives for our Jigsaw webrse
Being imprecise in nature, most of these tools require nmlanua
spection to see if a deadlock is real or not. Neverthelessgttech-
niques are effective in finding deadlocks because they ocadiqir
deadlocks that could potentially happen during a real ei@eus-
for such a prediction, static analyses do not need to seeaal @x-
ecution and dynamic analyses need to see only one multadbre
execution.

Dynamic analysis based deadlock detection can be madeereci
by taking the happens-before relation [18] into accountweier,

8t has several problems. First, it reduces the predictiveepaf

dynamic techniques—it fails to report deadlocks that ctwappen
in a significantly different thread schedule. Second, it parturb
an execution significantly and can fail to report a deadlbeit tan
happen when no dynamic analysis is performed.

We propose a new dynamic technique for detecting real dead-
locks in multi-threaded programs, calledEBDLOCKFUZZER,
which combines an imprecise dynamic deadlock detectioh-tec
niqgue with a randomized thread scheduler to create real-dead
locks with high probability. The technique works in two pesas
In the first phase, we use an informative and a simple variant
of the Goodlock algorithm, callethformative Goodlockor sim-
ply iGoodlock, to discover potential deadlock cycles in altinu
threaded program. For example, iGoodlock could report decyc
of the form (¢1,11, 2, [c1, c2]) (t2, 12, 11, [}, c5]), which says that
there could be a deadlock if thread tries to acquire locks at
program locatiore, after acquiring lock; at program locatior
and threadt, tries to acquire lock; at program locatior, af-
ter acquiring lockl, at program locatior} . In the second phase,
DEADLOCKFUZzZER executes the program with a random sched-
ule in order to create a real deadlock corresponding to aecycl
reported in the previous phase. For example, consider tbke cy

1They reduce the number of reports to 70 after applying varimsound
heuristics

(t1,11,12,[c1, c2])(t2, 12,11, [c], c5]) again. At each program state,
the random scheduler picks a thread and executes its nextnstat
with the following exception. It; is about to acquire lock at lo-
cation ¢, after acquiring lockl; at locationc:, then the random
scheduler pauses the execution of threadSimilarly, the random
scheduler pauses the execution of threai it is about to acquire
lock I, at locationc), after acquiring lock» at locationci. In this
biased random schedule, it is very likely that both the ttisaaill
reach a state whetge is trying to acquirds while holdingl; andt.

is trying to acquird, while holdingl.. This results in a real dead-
lock. In summary, BEADLOCKFuUzzERactively controls a random-
ized thread scheduler based on a potential deadlock cymbetesl
by an imprecise deadlock detection technique.

The above technique poses the followikey challengePhase
Il assumes that Phase | can provide it with precise knowlatiget
the thread and lock objects involved in the deadlock cyclefots
tunately, since thread and lock objects are created dyrdisniat
runtime, their addresses cannot be used to identify theosa@x-
ecutions, i.e. in the above example, addresses, ®$, [1, > do not
remain the same between Phase | and Phase Il executiong-Ther
fore, we need some mechanism to identify the same objeaissacr
executions. Specifically, we need a form of object abswaciuch
that if two dynamic objects in different executions are thens,
they must have the same abstraction. For example, the l&lzel o
statement at which an object is created can be used as ita@abst
tion. Such an abstraction of an object does not change aexess-
tions. However, an abstraction could be the same for sevbjatts
(e.g. if bothi; andl; in the above example are created by the same
statement). In this paper, we propose two techniques fopobm
ing the abstraction of an object that helps us to distingbéetiveen
different objects more precisely—the first technique is ivaded
by the notion ofk-object-sensitivityn static analysis [20] and the
second technique is motivated by the notion of executiomxnd
ing [30]. We show that both these abstractions are better tea
trivial abstraction where all objects have the same akstracd/\Ve
also empirically show that the abstraction based on exaguiti-
dexing is better than the abstraction based on k-objeditsaty
in most benchmarks.

We have implemented EnDLOCKFuUzzER for multi-threaded
Java programs in a prototype tool. We have applied the tool
to a large number of benchmarks having a total of over 600K
lines of code. The results of our experiments show thahD-
LOCKFuzzERcan create real deadlocks with high probability and
DeADLOCKFUZzZER can detect all previously known real dead-
locks.

We make the following contributions in this paper.

¢ We propose a simple and informative variant of the Goodlock
algorithm, callediGoodlock. Unlike existing Goodlock algo-
rithms [13, 4, 1], iGoodlock does not use lock graphs or depth
first search, but reports the same deadlocks as the exidtiog a
rithms. Due to this modification, iGoodlock uses more memory
but reduces runtime complexity. We also attach contextrinfo
mation with each cycle that helps in debugging and in biasing
the random scheduler. iGoodlock is iterative in nature—nit$i
all cycles of lengthk before finding any cycle of length + 1.
Our experiments show that all real deadlocks in our benckenar
have length two. Therefore, if we have a limited time budget,
we can run iGoodlock for one iteration so that it only reports
deadlock cycles of length 2.

Our key contributionis an active random deadlock detecting
scheduler that can create real deadlocks with high prdbabil
(we show this claim empirically) based on information po®d

by iGoodlock. This phase prevents us from reporting anyefals
positives and creates real deadlocks which are useful for de

bugging. This relieves the manual inspection burden astati
with other imprecise techniques such as Goodlock.

¢ \We propose two kinds of object abstraction techniques tiat h
us correlate thread and lock objects between iGoodlockland t
randomized scheduling algorithm.

¢ We have implemented EnDLOCKFUZzZER in a tool for Java
and have discovered subtle previously known and unknown
deadlocks in large applications. To the best of our knowdedg
DeADLOCKFuUzzERis the first precise dynamic deadlock anal-
ysis tool for Java that has been applied to large Java applica
tions.

2. Algorithm

The DEADLOCKFUZzZER algorithm consists of two phases. In the
first phase, we execute a multi-threaded program and findhpote
tial deadlocks that could happen in some execution of thgrpro.
This phase uses a modified Goodlock algorithm, caliéarmative
Goodlock or simply iGoodlock, which identifies potential dead-
locks even if the observed execution does not deadlock. We ca
the modified algorithrminformative because we provide suitable
debugging information to identify the cause of the deadletthis
debugging information is used by the second phase to create r
deadlocks with high probability. A limitation of iGoodlodk that

it can give false positives because it does not considerdhpéns-
before relation between the transitions in an executiona Aesult
the user is required to manually inspect such potential [defsl
The second phase removes this burden from the user. In tageph
a random thread scheduler is biased to generate an exetigion
creates a real deadlock reported in the previous phase vgth h
probability. We next describe these two phases in moreldetai

2.1 Background Definitions

We use a general and simple model of a concurrent system to
describe our dynamic deadlock checking algorithm. We atarsi

a concurrent system to be composed of a finite set of threads.
Each thread executes a sequence of labeled statementsea thr
communicates with other threads using shared objects. ft an
point during program execution, a concurrent system isstate

Let so be the initial state. A concurrent system evolves from one
state to another state when a thread executes a statemenir In
algorithms, we will consider the following dynamic instascof
labeled program statements:

1. ¢: Acquire(l), denoting the acquire of the dynamic lock
objectl. cis the label of the statement (same for below).

2. c¢: Rel ease(l), denoting the release of the dynamic lock
objectl.

.c: Call (m), denoting a call to the method.
. ¢: Ret ur n(m), denoting the return from the methed

5. ¢c: o =new (o', T), where the statement occurs in the body of
a methodm and when thd hi s argument ofm evaluates to
objecto’, theno is the dynamic object of typ& allocated by
the statement.

In several languages including Java, locks are re-entrant,
a thread may re-acquire a lock it already holds. In our algorj
we ignore the execution af: Acquire(l) or c: Rel ease(l)
statements by a thread if ¢ re-acquires the lock or does not
release the lock, respectivel§. To simplify exposition, we also

2This is implemented by associating a usage counter withlkadtch is
incremented whenever a thread acquires or re-acquirest¢keahd decre-
mented whenever a thread releases the lock. Executida i r e(l) by

assume that locks are acquired and released in a nested.avay, i
if a thread acquire$, after acquiringl:, then it has to releask
before releasing, . Our algorithm can easily be extended to handle
languages where locks can be acquired and released in &amagrbi
order.

Next we introduce some definitions that we will use to describ
our algorithms.

¢ Enabl ed(s) denotes the set of threads that are enabled in the
states. A thread is disabled if it is waiting to acquire a lock
already held by some other thread (or waiting gnoa n or a
wai t in Java.)

DEeFINITION 3. A lock dependency chain
T = <(t17 Ly, 1y, 01)7 ey (t'nu L77L7 lm7 Cm))
is a potential deadlock cyciél,, € L.

Note that the definition of a potential deadlock cycle never
uses any of th€;'s in D, to compute a potential deadlock cycle.
EachC; of a potential deadlock cycle provides us with information
about program locations where the locks involved in theeyatre
acquired. This is useful for debugging and is also used by the
active random deadlock checker to determine the prograatitots
where it needs to pause a thread.

Each lock and thread object involved in a potential deadtyek

¢ Al i ve(s) denotes the set of threads whose executions have notcle is identified by its unique id, which is typically tteeldressof

terminated in the state A states is in astall stateif the set of
enabled threads in(i.e. Enabl ed(s)) is empty and the set of
threads that are alive (i.8l i ve(s)) is non-empty.

e Execut e(s,t) returns the state after executing the next state-
ment of the thread in the states.

2.2 Phase I: iGoodlock

In this section, we present a formal description of iGookllathe
algorithm observes the execution of a multi-threaded @nogand
computes dock dependency relatio(defined below) and uses a
transitive closure of this relation to compute potentiahdleck
cycles. The algorithm improves over generalized Goodldgk-a
rithms [4, 1] in two ways. First, it adds context informatitma
computed potential deadlock cycle. This information hédpisien-
tify the program locations where the deadlock could happah a
also to statically identify the lock and thread objects imed in the
deadlock cycle. Second, we simplify the generalized Gazbdéd-
gorithm by avoiding the construction of a lock graph, wherekks

form the vertices and a labeled edge is added from one lock to

another lock if a thread acquires the latter lock while hmidihe
former lock in some program state. Unlike existing Goodlalgo-
rithms, iGoodlock does not perform a depth-first searchcbut-
putes transitive closure of the lock dependency relatianséch it
uses more memory, but has better runtime complexity. Weinext
troduce some formal definitions before we describe the algor
Given a multi-threaded executian let L, be the set of lock
objects that were held by any thread in the execution Bnde
the set of threads executed in the execution.d bt the set of all
statement labels in the multi-threaded program. We nextetfe
lock dependency relation of a multi-threaded execuéisifiollows.

DEeFINITION 1. Given an execution, alock dependency relation
D, of g is asubset o, x 257 x L, x C* such thai(t, L, [, C) €
D, iff in the executiorp, in some state, threatlacquires lockl
while holding the locks in the sét, andC is the sequence of labels
of Acqui r e statements that were executed by acquire the locks
in LU {l}.

DEFINITION 2. Given a lock dependency relatial, a lock de-
pendency chaifr = ((t1, L1,11,C1), .. ., (tm, Lm,lm,Cm)) is @
sequence iD* such that the following properties hold.

1. for all distincti,j € [1,m], t; # t;, i.e. the threads
t1,to,...,tx are all distinct objects,

for all distincté,j € [1,m], i # [;, i.e. the lock objects
l1,l2,..., 1, are distinct,

forall: € [1,m — 1], l; € Li41, i.e. each thread could
potentially wait to acquire a lock that is held by the nexetml,
for all distincti,j € [1,m], L; N L; = 0, i.e., each thread;
should be able to acquire the locks i without waiting.

2.

3.

4,

t is considered whenever the thretagicquires or re-acquires the lotknd
the usage counter associated Witk incremented from O to 1.

the object. The unique id of an object, being based on dynamic
formation, can change from execution to execution. Theesthe
unique id of an object cannot be used by the active randorkehec
to identify a thread or a lock object across executions. ttepto
overcome this limitation, we compute an abstraction of edjact.
An abstraction of an object identifies an object by statigpam in-
formation. For example, the label of a statement at whichtjeod

is created could be used as its abstraction. We describe étvo b
ter (i.e. more precise) object abstraction computatiohrtiggies in
Section 2.4. In this section, we assume thbs (o) returns some
abstraction of the objecet

Given a potential deadlock cyclé(ti,L1,01,C1), ...,
(tm, Lm, lm,Cm)), iGoodlock reports the abstract deadlock cycle
((abs(t1),abs(l1),C1), ..., (abs(tm),abs(lm),Cm)). The
active random checker takes such an abstract deadlock agdle
biases a random scheduler so that a real deadlock corresgdnd
the cycle gets created with high probability.

We next describe iGoodlock. Specifically, we describe how
we compute the lock dependency relation during a multicitieel
execution and how we compute all potential deadlock cyalesng
a lock dependency relation.

2.2.1 Computing the lock dependency relation of a
multi-threaded execution

In order to compute the lock dependency relation during aimul
threaded execution, we instrument the program to maintaén t
following three data structures:

e LockSet that maps each thread to a stack of locks held by the
thread

e Cont ext that maps each thread to a stack of the labels of
statements where the thread acquired the currently helkd loc

e D is the lock dependence relation

We update the above three data structures during a mutided
execution as follows:

® Initialization:
= forall ¢, bothLockSet [¢] andCont ext [t] map to an empty stack
= D is an empty set
o |f threadt executes the statement Acqui r e(l)
= pushc to Cont ext [t]
= add(t,LockSet [¢], 1, Cont ext [¢]) to D
= pushl to LockSet [t]
o |f threadt executes the statement Rel ease(l)
= pop fromCont ext [¢]
= pop fromLockSet [¢t]

At the end of the execution, we outplitas the lock dependency
relation of the execution.

2.2.2 Computingpotential deadlock cycles iteratively

Let D* denote the set of all lock dependency chaindathat has
lengthk. Therefore D' = D. iGoodlock computes potential dead-
lock cycles by iteratively computing?, D*, D*, ... and finding
deadlock cycles in those sets. The iterative algorithm éongut-
ing potential deadlock cycles is described in Algorithm 1.

Algorithm 1 i Goodl ock(D)

1: INPUTS: lock dependency relatioly
29«1

3: D'« D

4: while D* # () do

5. for each(t, L,1,C) € D and eachr in D? do
6: if 7, (¢, L,1,C) is a dependency chain by Definitiortigen
7: if ,(¢, L,1,C) is a potential deadlock cycle by Definition 3
then
8 report abs(t, (¢, L, 1, C)) as a potential deadlock cycle
9 else
10: addr, (t, L,1,C) to D!
11: end if
12 end if
13 end for
14: 1<=1i+1
15: end while

Note that ini Goodl ock(D) we do not add a lock dependency
chain to D' if it is a deadlock cycle. This ensures that we do
not report complex deadlock cycles, i.e. deadlock cycles ¢an
be decomposed into simpler cycles.

2.2.3 Avoiding duplicate deadlock cycles

In Algorithm 1, a deadlock cycle of lengthgets reported times.
For example, if

((t1, L1,11,Ch), (t2, L2,12,C2), ..., (tm, Lm, lm, Cm))
is reported as a deadlock cycle, then

((t2, L2,12,C2), ..., (tm, Lm, lm, Cm), (t1, L1,11,C1))
is also reported as a cycle. In order to avoid such duplicateput
another constraint in Definition 2: the unique id of threéaanust
be less than the unique id of threads. . . , .

2.3 Phase II: The Active Random Deadlock Checking
Algorithm

DeaDLOCKFUZzZER executes a multi-threaded program using a
random scheduler. A simple randomized execution algorithm
shown in Algorithm 2. Starting from the initial statg, this al-
gorithm, at every state, randomly picks an enabled threddeae-
cutes its next statement. The algorithm terminates whesytstem
reaches a state that has no enabled threads. At terminitioere
is at least one thread that is alive, the algorithm reportgstem
stall. A stall could happen due to a resource deadlock (eadd
locks that happen due to locks) or a communication deadiceka(
deadlock that happens when each thread is waiting for aligna
some other thread in the set). We only consider resourcdatzad
in this paper.

A key limitation of this simple random scheduling algorithm
is that it may not create real deadlocks very ofteEADLOCK-

FuzzEeR biases the random scheduler so that potential deadlock

cycles reported by iGoodlock get created with high proligbil
The active random deadlock checking algorithm is shown in Al
gorithm 3. Specifically, the algorithm takes an initial stag and

a potential deadlock cycl€ycl e as inputs. It then executes the
multi-threaded program using the simple random schedexeept
that it performs some extra work when it encounters a lockiaeq
or lock release statement. If a threfaid about to acquire a lodkin
the contexC, thenif(abs(t), abs (1), C) is presentirCycl e, the
scheduler pauses threaleforet acquires locK, giving a chance

Algorithm 2 simpleRandomCheckex)

: INPUTS: the initial statesg

ER=-1t)

: while Enabl ed(s) # 0 do

t < arandom thread iEnabl ed(s)
s < Execut e(s, t)

: end while

cif Alive(s) # 0 then

print ‘System Stall”’

: end if

to another thread, which is involved in the potential deeklioy/cle,
to acquire lock subsequently. This ensures that the system creates
the potential deadlock cycleycl e with high probability.

Algorithm 3 DEADL OCKFUZZER(so, Cycl)

1: INPUTS: the initial statesg, a potential deadlock cycleycl e
2.8 < sp
3: Paused < 0
4: LockSet andCont ext map each thread to an empty stack
5: while Enabl ed(s) # @ do

: t <« arandom thread iEnabl ed(s)\ Paused

6
7: St < next statement to be executed by
8. ifStnmt = c: Acquire(l) then
9: pushl to LockSet [¢]
0: pushe to Cont ext [t]
11: checkReal Deadl ock(LockSet) // seeAlgorithm 4

12: if ((abs(t), abs(l), Context|[t])¢ Cycle) then
13: s < Execute(s,t)

14: else

15: pop fromLockSet [¢t]

16: pop fromCont ext [¢]

17: addt to Paused

18: end if

19: elseifStm = c: Rel ease(l) then
20: pop fromLockSet [t]

21: pop fromCont ext [t]

22: s < Execute(s,t)

23: else

24: s < Execute(s,t)

25: endif

26: if | Paused| = | Enabl ed(s)| then
27: remove a random thread frdPaused
28: endif

29: end while

30: if Active(s) # (0then
print ‘System Stall’
32: end if

Algorithm 4 checkReal Deadl ock(LockSet)

1: INPUTS: LockSet mapping each thread to its current stack of locks

2: if there exist distincty, to,...,t,m andly,ls, ..., ln such thatl,,
appears beforé; in LockSet [¢,,] and for eachi € [1,m — 1], ;
appears beforg ;1 in LockSet [¢;] then

3: print ‘Real Deadlock Found!

4: end if

Algorithm 3 maintains three data structurédckSet that
maps each thread to a stack of locks that are currently held by
the thread,Cont ext that maps each thread to a stack of state-
ment labels where the thread has acquired the currentlylbeitd,
and Paused which is a set of threads that has been paused by
DeaDLOCKFUzzER. Paused is initialized to an empty set, and
LockSet andCont ext are initialized to map each thread to an
empty stack.

DEADLOCKFUZzZER runs in a loop until there is no enabled
thread. At termination, BADLOCKFUZZERreports a system stall

if there is at least one active thread in the execution. No& t
DeADLOCKFuzzERonly catches resource deadlocks. In each iter-
ation of the loop, EADLOCKFUZzZERpicks a random threaithat
is enabled but not in theaus ed set. If the next statement to be ex-
ecuted byt is not a lock acquire or releasegxecutes the statement
and updates the state as in the simple random schedulingtaifgo
(see Algorithm 2). If the next statement to be executed Isyc:
Acqui re(l), cand! are pushed t€@ont ext [t] andLockSet [t],
respectively. EADLOCKFUZZER then checks if the acquire éf
by t could lead to a deadlock usircheckReal Deadl ock in
Algorithm 4. checkReal Deadl ock goes over the current lock
set of each thread and sees if it can find a cycle. If a cyclestodt
ered, then BADLOCKFUzZERas created geal deadlock. If there
is no cycle, then BADLOCKFUZZER determines ift needs to be
paused in order to get into a deadlock state. Specificatiipgtks if
(abs(t),abs (1), Cont ext [t]) is present irCycl e. If ¢ is added
to Paused, then we pop from bothock Set [t] andCont ext [¢]
to reflect the fact that has not really acquired the lodk If the
next statement to be executeddig c: Rel ease(l), then we pop
from bothLockSet [t] andCont ext [t].

At the end of each iteration, it may happen that thePsatsed
is equal to the set of all enabled threads. This results irage st
where DEADLOCKFUzZER has unfortunately paused all the en-

erate minor differences between two executions, causiegds to
pause at fewer locations and miss deadlocks. We next dederib
abstraction techniques for objects that we have found tafeetn
our experiments.

2.4.1 Abstraction based on k-object-sensitivity

Given a multi-threaded execution an& a 0, leto, .. . ox be the
sequence of objects such that foriadt [1, k—1], o; is allocated by
some method of objeet; ;. We defineabs ¢ (01) as the sequence
(c1,...,cr) Whereg; is the label of the statement that allocated
abs{(o01) can then be used as an abstractiomofWe call this
abstraction based on k-object-sensitiViitgcause of the similarity
to k-object-sensitive static analysis [20].

In order to computebs ¢ (o) for each objecb during a multi-
threaded execution, we instrument the program to maintaiaa
Cr eat i onMap that maps each objeet to a pair (o, c) if o
is created by a method of object at the statement labeled
This gives the following straightforward runtime algorithfor
computingCr eat i onMap.

e |f a threadt executes the statement o = new (o', T'), then
addo — (o', c) to Cr eat i onMap.

One can us€r eat i onMap to computeabs ¢ (o) using the fol-

abled threads and the system cannot make any progress. We Ca'lowing recursive definition:

this thrashing. DEADLOCKFUZZER handles this situation by re-
moving a random thread from the deaused. A thrash implies

that DEADLOCKFUZZERhas paused a thread in an unsuitable state.

DeabLockFuzzeRshould avoid thrashing as much as possible in
order to guarantee better performance and improve the biltipa
of detecting real deadlocks.

2.4 Computing object abstractions

A key requirement of BADLOCKFuUzZzER s that it should know
where a thread needs to be paused, i.e. it needs to know gadhr
that is trying to acquire a lockin a contextC' could lead to a dead-
lock. DEADLOCKFUZZER gets this information from iGoodlock,
but this requires us to identify the lock and thread objeltss are
the “same” in the iGoodlock and EADLOCKFUZZER executions.
This kind of correlation cannot be done using the addressttie
unique id) of an object because object addresses changesaoro
ecutions. Therefore, we propose to use object abstractiiotwe

abs? (o) = () if k=0orCreationMaplo] = L

absg, (o) = c::absy(o') if CreationMaplo] = (0/,c)
When an object is allocated inside a static method, it witlhmeve
a mapping inCr eat i onMap. Consequentlyabs{ (o) may have
fewer thank elements.

2.4.2 Abstraction based on light-weight execution indexig

Given a multi-threaded execution, a > 0, and an objecb,
let mn,mn—1,...,m1 be the call stack when is created, i.e.
o is created inside methogh, and for alli € [1,n — 1], m;

is called from methodmn;+;. Let us also assume thati; is
the label of the statement at whieh;; invokesm; and g;+1

is the number of timesn; is invoked bym;;: in the context
M, Mn—1,...,Mip1. Thenabsi (o) is defined as the sequence
[e1,q1,¢2,q2,- .., ck,qr], Wherec, is the label of the statement at
which o is created and; is the number of times the statement is
executed in the contextu,,, mn—1, ..., m1.

objects are same across executions, then they have the fame 2 main() {
straction. We assumabs (o) computes the abstraction of an ob- 5

: for (int i=0; i<b5; i++)
Ject. 3 foo();
There could be several ways to compute the abstraction of apy
object. One could use the label of the statement that aldddie 5 void foo() {
object (i.e. the allocation site) as its abstraction. Havethat 6 bar();
would be too coarse-grained to distinctly identify manyeaitg. For 7 bar();
example, if one uses the factory pattern to allocate allahreb- 8}
jects, then all of the threads will have the same abstraclibare- 18 Volﬂgr b?r”(]i i{_o_ <3 i)
fore, we need more contextual information about an allocagite ;7 Object | = new Object():

to identify objects at finer granularity. 12}
Note that if we use a coarse-grained abstraction, thead

LOCKFuUZzzER will pause unnecessary threads before they try to ~ For example in the above code, dfis the first object cre-

acquire some unnecessary locks. This is because all these-un
essary threads and unnecessary locks might have the satrazabs
tion as the relevant thread and lock, respectively. Thisiwiturn
reduce the effectiveness of our algorithm asADLOCKFUZZER

will more often remove a thread from thiRaused set due to the
unavailability of any enabled thread. Note that we call gitsa-
tion thrashing Our experiments (see Section 5) show that if we use
the trivial abstraction, where all objects have the saméaditon,

ated by the execution afai n, then absi(o) is the sequence
[11,1,6,1,3,1]. Similarly, if o is the last object created by the ex-
ecution ofrmai n, thenabs?(o) is the sequencfll, 3,7, 1,3, 5].
The idea of computing this kind of abstraction is similar be t
idea of execution indexing proposed in [30], except thatgveie
branch statements and loops. This makes our indexing\igidght,
but less precise.

In order to comput@bs? (o) for each object during a multi-

then we get a lot of thrashing. This in turn reduces the pritibab
of creating a real deadlock. On the other hand, if we conginter
fine-grained abstraction for objects, then we will not besabltol-

threaded execution, we instrument the program to maintain a
thread-local scalad to track its depths and two thread-local maps
Cal | St ack andCount er s. We useCal | St ack: to denote the

©CoOo~NOORWNE

class MyThread extends Thread {
Object 11, 12;
boolean fl ag;
MyThr ead(Object I 1, Object |2, boolean b) {
this. 11 =11; this.12 =12; this.flag = b;
}
public void run() {
if (flag) { // some long runni ng met hods
f1();
f2();
£3();
f4();
synchronized(l 1) {
synchronized(l 2) {
}
}
}
public static void main (String[] args) {
Object ol = new Object();
Object 02 = new Object();
/1 oject 03 = new Ohject();
(new MyThread(ol, 02, true)).start();
(new MyThread(o02, o1, false)).start();
/'l (new MyThread(o2,03,false)).start();
}

Figure 1. Simple Example of a Deadlock

Cal | St ack map of threadt. The above data structures are up-
dated at runtime as follows.

e [nitialization:
s forallt,d¢ <0
= for all t andc, Count er s¢[d¢][c] < 0

e |f a threadt executes the statement Cal | (m)
= Count er s¢[d¢][c] <= Count er s¢[d¢][c] + 1
= pushctoCal | St ack;
= pushCount er s¢[d:][c] to Cal | St ack:
vd <=di +1
= for all ¢, Count er s¢[d¢][c] < 0

e |f a threadt executes the statement Ret ur n(m)
ndy =dy — 1
= pop twice fromCal | St ack:

e |f a threadt executes the statement o =new(o’, T")
= Count er s¢[d¢][c] < Count er s¢[d¢][c] + 1
= pushctoCal | St ack;
= pushCount er s¢[d¢][c] to Cal | St acky
= abs] (o) is the top2k elements ofal | St ack;
= pop twice fromCal | St ack:

Note thatabs? (o) has2k elements, but if the call stack has
fewer elements, theabs (o) returns the full call stack.

3. Examples lllustrating DEADLOCK FUZZER

Consider the multi-threaded Java program in Figure 1. Thgram
defines aMy Thr ead class that has two locksl and| 2 and a
booleanf | ag. Ther un method of\W Thr ead invokes a number
of long running methodé1, f2, f3, f4if flagistrue and

then it acquires locks 1 andl 2 in order. The body of un shows
a common pattern, where a thread runs several statements and
then acquires several locks in a nested way. Waén method
creates two lock objectsl and 02. It also creates two threads
(i.e. instances of Thr ead). In the first instancé 1 andl 2 are
settool ando2, respectively, andl | ag is set to true. Therefore,

a call tost art on this instance will create a new thread which
will first execute several long running methods and then imequ
0l ando?2 in order. A call tost art on the second instance of
My Thr ead will create a new thread which will acquic ando1

in order. We have commented out lines 24 and 27, becauserhey a
not relevant for the current example—we will uncomment thiem
the next example.

The example has a deadlock because the lodkando2 are
acquired in different orders by the two threads. Howevés,dbad-
lock will rarely occur during normal testing because theosec
thread will acquireo2 andol immediately after start, whereas the
first thread will acquirenl ando2 after executing the four long
running methods. iGoodlock will report this deadlock as &epe
tial one by observing a single execution that does not dekdld
we use the abstraction in Section 2.4.2 with, Bay 10, the report
will be as follows:

([25, 1], [23, 1], [15, 16]), ([26, 1], [22, 1], [15, 16])

where[25, 1], [26, 1], [22, 1], [23, 1] are the abstractions of the first
thread, the second threadl,, ando2, respectively[15, 16] denotes
the context in which the second lock is acquired by each threa

The active random deadlock checker will take this report and
create the real deadlock with probability 1. Specificaltywill
pause both the threads before they try to acquire a lockeflin

The above example shows thaeBbLOCKFUZZER can create
a rare deadlock with high probability. In practice, the atfrob-
ability may not be 1—[EBADLOCKFUZZER can miss a deadlock
because the execution could simply take a different pathaioen-
determinism and that path may not exhibit a deadlock. Howéve
our experiments we have found that the probability of crepd
deadlock is high on our benchmarks.

The above example does not show the utility of using thread
and object abstractions. To illustrate the utility of olbjand thread
abstractions, we uncomment the lines at 24 and 27. Now wéecaea
third lock03 and a third thread which acquire® ando3 in order.
iGoodlock as before will report the same deadlock cycle ghén
previous example. In BADLOCKFUZZER, if we do not use thread
and object abstractions, then with probabiliys (approx), the
third thread will pause before acquiring the lock at line This is
because, without any knowledge about threads and objeciséu
in a potential deadlock cycle, EADLOCKFUZZER will pause any
thread that reaches line 16. Therefore, if the third thremasps
before line 16, then the second thread will not be able toiaequ
lock 02 at line 15 and it will be blocked. BADLOCKFUZZERWill
eventually pause the first thread at line 16. At this point thveads
are paused and one thread is blocked. This resultstimashing
(see Section 2.3). To get rid of this stallEBDLOCKFUzZzERwill
“un-pause” the first thread with probability 0.5 and we wilksithe
deadlock with probability 0.25 (approx). On the other hahde
use object and thread abstractions, theanDLOCKFUzZER will
never pause the third thread at line 16 and it will create &z r
deadlock with probability 1. This illustrates that if we dotruse
thread and object abstractions, then we get more thrashimjthe
probability of creating a real deadlock gets reduced.

4. Optimization: avoiding another potential cause
for thrashing

We showed that using object and thread abstractions helpsee
thrashing; this in turn helps increase the probability afating a

deadlock. We show another key reason for a lot of thrashisggu
the following example and propose a solution to partly awnidh
thrashings.

threadl{
synchroni zed(1 1) {
synchroni zed(1 2) {

8
9

t hread2{
synchroni zed(1 1) {

synchroni zed(1 2) {
synchroni zed(1 1) {

}
}

The above code avoids explicit thread creation for simiyliof
exposition. iGoodlock will report a potential deadlock keym this
code. In the active random deadlock checking phasehifeadl
is paused first (at line 3) and tfhr ead2 has just started, then
t hr ead2 will get blocked at line 9 becaugenhr ead1 is holding
the lockl 1 and it has been paused anhlr ead2 cannot acquire
the lock. Since we have one paused and one blocked threadtwe g
a thrashing. BADLOCKFUZzZzER will “un-pause”t hr ead1 and
we will miss the real deadlock. This is a common form of thiagh
that we have observed in our benchmarks.

In order to reduce the above pattern of thrashing, we make a
thread to yield to other threads before it starts enteringadtibck
cycle. Formally, if(abs(t), abs (1), C) is a component of a poten-
tial deadlock cycle, then BabDLoCKFuUzzERWiIll make any thread
t' with abs (t) = abs(t’) yield before a statement labeledvhere
c is the bottommost element in the sta€k For example, in the
above code, BADLOCKFUZzZER will make t hr ead1 yield be-
fore it tries to acquire lock 1 at line 2. This will enable hr ead2
to make progress (i.e. acquire and reldaset lines 9 and 11, re-
spectively).t hr ead2 will then yield to any other thread before
acquiring lockl 2 at line 12. Therefore, the real deadlock will get
created with probability 1.

1
2
3
4
5
6

5. Implementation and Evaluation

DeaDLOCKFUZzZER can be implemented for any language that
supports threads and shared memory programming, suchasrJav
C/C++ with pthreads. We have implementeé AbLOCKFUZZER

for Java by instrumenting Java bytecode to observe varioeiste
and to control the thread scheduler. The implementatiompéstof
the CaL FuzzeRrframework [16]. EADLOCKFUZZERcan go into
livelocks. Livelocks happen when all threads of the progend

up in thePaused set, except for one thread that does something
in a loop without synchronizing with other threads. In order
avoid livelocks, IEADLOCKFUZzZER creates a monitor thread that
periodically removes those threads from Peused set that are
paused for a long time.

5.1 Experimental setup

We evaluated BADLOCKFUZZER on a variety of Java programs
and libraries. We ran our experiments on a dual socket IngeinX
2GHz quad core server with 8GB of RAM. The following programs
were included in our benchmarks: cache4j, a fast threasligaf
plementation of a cache for Java objects; sor, a succesgar 0
relaxation benchmark, and hedc, a web-crawler applicatioth
from ETH [28]; jspider, a highly configurable and customieab
Web Spider engine; and Jigsaw, W3C's leading-edge Web rserve
platform. We created a test harness for Jigsaw that comtiyre
generates simultaneous requests to the web server, simgutadl-
tiple clients, and administrative commands (such as “sivatd
server”) to exercise the multi-threaded server in a higldgoir-
rent situation.

The libraries we experimented on include the Java Collastio
Framework, Java logging facilitieséva. uti | . | oggi ng),and
the Swing GUI frameworkj(avax. swi ng). Another widely used
library included in our benchmarks is the Database Conmecti
Pool (DBCP) component of the Apache Commons project. Each
of these libraries contains potential deadlocks that weevedile
to reproduce using BADLOCKFUZZER. We created general test
harnesses to use these libraries with multiple threadseXamnple,
to test the Java Collections in a concurrent setting, we tised
synchronized wrappers jrava. uti | . Col | ecti ons.

5.2 Results

Table 1 shows the results of our analysis. The second column
reports the number of lines of source code that was instrteden
If the program uses libraries that are also instrumentesl; tre
included in the count. The third column shows the averagémen
of a normal execution of the program without any instrumeoia
or analysis. The fourth column is the runtime of iGoodlockgRe
1). The fifth column is the average runtime oERDLOCKFUZZER
(Phase I1). The table shows that the overhead of our actigeken
is within a factor of six, even for large programs. Note thattime
for the web server Jigsaw is not reported due to its interacti
nature.

The sixth column is the number of potential deadlocks regabrt
by iGoodlock. The seventh column is the number of cycles that
correspond to real deadlocks after manual inspection. igead,
since DEADLOCKFUZzZER could reproduce 29 deadlocks, we can
say for sure that Jigsaw has 29 or more real deadlocks. W&th th
exception of Jigsaw, iGoodlock was precise enough to repoyt
real deadlocks. The eighth column is the number of deadlpdles
confirmed by ZEADLOCKFUZZER. The ninth column is the empir-
ical probability of DEADLOCKFUZzZER reproducing the deadlock
cycle. We ran [EADLOCKFUZzZER 100 times for each cycle and
calculated the fraction of executions that deadlockedguBIBAD-
LOCKFUZZER. Our experiments show thatHADLOCKFUzZER
reproduces the potential deadlock cycles reported by i@ckd
with very high probability. We observed that for some Cdilets
benchmarks, BADLOCKFUzzERreported a low probability of 0.5
for creating a deadlock. After looking into the report, weirid
that in the executions whereedDLOCKFUzzERreported no dead-
lock, DEADLOCKFUZZER created a deadlock which was different
from the potential deadlock cycle provided as input |]aADLOCK-
FuzzeRr. For comparison, we also ran each of the programs nor-
mally without instrumentation for 100 times to observe iésk
deadlocks could occur under normal testing. None of the rens
sulted in a deadlock, as opposed to a run witnDLOCKFUZZER
which almost always went into deadlock. Column 10 shows the a
erage number of thrashings per run. Columns 9 and 10 show that
the probability of creating a deadlock decreases as the eunth
thrashings increases.

We conducted additional experiments to evaluate the @féect
ness of various design decisions foEEDLOCKFUZzZER. We tried
variants of DEADLOCKFUZzZzER: 1) with abstraction based on k-
object-sensitivity, 2) with abstraction based on lightigh® exe-
cution indexing, 3) with the trivial abstraction, 4) withtotontext
information, and 5) with the optimization in Section 4 tutneff.
Figure 2 summarizes the results of our experiments. Notethiea
results in Table 1 correspond to the variant 2, where we use th
light-weight execution indexing abstraction, contextoimiation,
and the optimization in Section 4. We found this variant tctoe
best performer: it created deadlocks with higher probigbitian
any other variant and it ran efficiently with minimal numbdr o
thrashings.

The first graph shows the correlation between the various var
ants of DEADLOCKFuUzzER and average runtime. The second

Program name Lines of Avg. Runtime in msec. # Deadlock cycles Probability of | Avg. # of
code | Normal | iGoodlock | DF | iGoodlock | Real | Reproduced| reproduction| Thrashes
cachedj 3,897 2,045 3,409 - 0 0 - - -
sor 17,718 163 396 - 0 0 - -
hedc 25,024 165 1,668 - 0 0 - - -
jspider 10,252 4,622 5,020 - 0 0 - - -
Jigsaw 160,388 - - - 283 >29 29 0.214 18.97
Java Logging 4,248 166 272 493 3 3 3 1.00 0.00
Java Swing 337,291 4,694 9,563 | 28,052 1 1 1 1.00 4.83
DBCP 27,194 603 1,393 1,393 2 2 2 1.00 0.00
ArrayList,
LinkedList, 17,633 2,862 3,244 | 7,070 9+9+9 | 9+9+9 9+9+9 0.99 0.0
Stack
HashMap,
WeakHashMap,
LinkedHashMap, 18,911 2,295 2,596 2898 4+4+4 | 4+4+4 4+4+4 0.52 0.04
IdentityHashMap, +4+4 +4+4 +4+4
TreeMap
Table 1. Experimental results. (Context + 2nd Abstraction + Yieldiimfzation)
Runtime (Normalized to uninstrumented run) Probability of reproducing deadlock
100 Context + 1st Abstractio—— !
Context + 2nd Abstractio
Ignore Abstractionz====
50 | Ignore Contexte==z== 08l J
No Yields
0.6} B
15 +
0.4t B
10 +
51 02t —
0 5 0 i %
Collections Logging DBCP Swing Collections Logging DBCP Swing
Avg. thrashing per run Correlation between thrashing and probability.
600 1 w T
N
500 |- é
e g § 0.8 B
10 + _‘é 0.6 1
8l 8
S 04 X]
6t 2 *¥
g
ar 8 02 * 4
g
2 L
7 ’ 0 s s s s s s s s s
0 : X 0 2 4 6 8 10 12 14 16 18 20
Collections Logging DBCP Swing

of thrashings

Figure 2. Performance and effectiveness of variations @ADLOCKFUZZER

graph shows the probability of creating a deadlock by theé- var
ants of DEADLOCKFUZzZER. The third graph shows the average

number of thrashings encountered by each variant|ef@.ock-

ber of thrashings and the probability of creating a deadlock

The first graph shows that variant 2, which uses executicexind

ing, performs better than variant 1, which uses k-objentiiwity.

lock is maximum for variant 2 on our benchmarks. The diffeeen
is significant for the Logging and DBCP benchmarks. Ignogbg

straction entirely (i.e. variant 3) led to a lot of thrashiimgCol-
FuzzeRr. The fourth graph shows the correlation between the num- lections and decreased the probability of creating a deldibhe
third graph on the Swing benchmark shows that variant 2 has mi
mum thrashing. Ignoring context information increasedttinash-

ing and the runtime overhead for the Swing benchmark. In the
The second graph shows that the probability of creating a-dea Swing benchmark, the same locks are acquired and released ma

the opposite order: the lock @s Li st is acquired first at line 623,

org.wic. jigsaw http. httpd { and then on the factory at line 574. Another similar deadlock

384: SocketCientFactory factory;

1442; void cleanup(...) { curs when &ocket C i ent kills an idle connection. These also
1455: factory. shut down();} involve the same locks, but are acquired at different progiaca-
1711: void run() { tions. iGoodlock provided precise debugging informatiodistin-
1734: cleanup(...);}} guish between the two contexts of the lock acquires.

N) The deadlock in the Java Swing benchmark occurs when
org.wac. jigsaw http.socket. Socketdient { a program synchronizes on aFrame object, and invokes

42: Socket Client Factory pool ;

111° void run() { the set Caret Posi ti on() method on aJText Area ob-

ject that is a member of thdFrame object. The sequence

152: pool . cl i ent Connect i onfi ni shed(. ..)i }} of lock acquires that leads to the deadlock is as follows. The
org.wac.jigsaw http. socket. Socket O i ent Factory { mai n thread obtains a lock on théFrame object, and an
130: SocketdientState csList; Event Queue thread which is also running, obtains a lock on
574: synchronized booleandecrldl eCount() {...} a Basi cText Ul $Basi cCar et object at line number 1304
618: boolean client ConnectionFini shed(...) { in javax/swing/text/DefaultCaret.javaThe mai n thread then
623: synchronized (csList) { tries to obtain a lock on thdBasi cText Ul $Basi cCar et
626: decrldl eCount();}} object at line number 1244 jjavax/swing/text/DefaultCaret.jaya

867: synchronized void killQients(...) {
872: synchronized (csList) {...}}
902: void shutdown() {

but fails to do so since the lock has not been released by the
Event Queue thread. TheEvent Queue thread tries to ac-

904 KillQients(...):} quire the lock on theJFr anme object at line number 407 in

} javax/swing/RepaintManager.javdut cannot since it is still
held by the mai n thread. The program goes into a dead-

Figure 3. Deadlock in Jigsaw lock. This deadlock corresponds to a bug that has been szhatt

http://bugs. sun. conl vi ewbug. do?bug.i d=4839713.
One of the deadlocks that we found in the DBCP

times at many different program locations during the exeout ~ benchmark occurs when a thread tries to create a
Hence, ignoring the context of lock acquires and releaseisiio a ~ PreparedStatement, and another thread simultaneously

huge amount of thrashing. closes anothePr epar edSt at enent . The sequence of lock
The first graph which plots average runtime for each variant acquires that exhibits this deadlock is as follows. The fiistad
shows some anomaly. It shows that variant 3 runs faster tant obtains a lock on &Connection object at line number 185

2 for Collections—this should not be true given that variant ~ in org/apache/commons/dbcp/DelegatingConnection.javehe
thrashes more than variant 2. We found the following reason f Second thread obtains a lock orkeyedObj ect Pool object at
this anomaly. Without the right debugging information ficed line number 78 inorg/apache/commons/dbcp/PoolablePrepared-
by iGoodlock, it is possible for BADLOCKFUZZER to pause at Statement.javaThe first thread then tries to obtain a lock on the
wrong locations but, by chance, introduce a real deadlodkctwh ~ SameKeyedGbj ect Pool object at line number 87 irg/a-
is unrelated to the deadlock cycle it was trying to reprodides pache/commons/dbcp/PoolingConnection.jakat cannot obtain
causes the anomaly in the first graph where the runtime oadrhe it Since it is held by the second thread. The second threes toi
for Collections is lower when abstraction is ignored, bettimber ~ Obtain a lock on th&onnect i on object at line number 106 in
of thrashings is more. The runtime is measured as the tiraiest ~ Org/apache/commons/dbcp/PoolablePreparedStateraeat.j but
from the start of the execution to either normal terminaton ~ Cannot acquire it since the lock has not yet been releasetieoy t
when a deadlock is found. EADLOCKFUZZER with our light- first thread. The program, thus, goes into a deadlock.
weight execution indexing abstraction faithfully reprees the The deadlocks in the Java Collections Framework happen
given cycle, which may happen late in the execution. For more When multiple threads are operating on shared collectigactd
imprecise variants such as the one ignoring abstractiosadidck ~ Wrapped with thesynchroni zedX classes. For example, in
early in the execution may be reproduced wrongfully, thdsicing the synchroni zedLi st classes, the deadlock can happen if
the runtime. one thread executésl. addAl | (1 2) concurrently with another
The fourth graph shows that the probability of creating addea thread executind 2. ret ai nAl I (1 1) . There are three meth-
lock goes down as the number of thrashings increases. This va 0ds,addAl | (), removeAl | (), andretai nAll () that ob-
idates our claim that thrashings are not good for creatirapide fain locks on both 1 andl 2 for a total of 9 combinations of

locks with high probability and our variant 2 tries to redisteh deadlock cycles. Theynchroni zedMap classes have 4 com-
thrashings significantly by considering context inforraatand ob- binations with the methodsqual s() andget ().
ject abstraction based on execution indexing, and by amplgie The test cases for Java Collections are artificial in theestvat
optimization in Section 4. the deadlocks in those benchmarks arise due to inapprepres

of the API methods. We used these benchmarks because they hav
5.3 Deadlocks found been used by researchers in previous work (e.g. Williamk 2%

and Jula et al. [17]), and we wanted to validate our tool again

DeaDLOCKFuUzzERfound a number of previously unknown and these benchmarks.

known deadlocks in our benchmarks. We next describe some of

them. L

Two previously unknown deadlocks were found in Jigsaw. As 54 Imprecision in Goodlock
shown in Figure 3, when the http server shuts down, it catlaralip Since DEADLOCKFUZzZER is not complete, if it does not classify
code that shuts down theocket O i ent Fact ory. The shut- a deadlock reported by iGoodlock as a real deadlock, we ¢anno

down code holds a lock on the factory at line 867, and in turn at definitely say that the deadlock is a false warning. For examp
tempts to acquire the lock apsLi st at line 872. On the other in the Jigsaw benchmark, the informative Goodlock algaritie-

hand, when &ocket C i ent is closing, italso calls into the fac- ported 283 deadlocks. Of these 29 were reported as realatbéad|
tory to update a global count. In this situation, the lockslzld in by DEADLOCKFUZZER. We manually looked into the rest of the

deadlocks to see if they were false warnings by iGoodlockeak
deadlocks that were not caught b BoLOCKFUZZER. For 18 of
the cycles reported, we can say with a high confidence thgt the
are false warnings reported by the iGoodlock algorithm. sEhe
cycles involve locks that are acquired at the same prograte-st
ments, but by different threads. There is a single reasonakltof
these deadlocks are false positives. The deadlocks cam ooku

if a CachedThr ead invokes itswai t For Runner () method
before thatCachedThr ead has been started by another thread.
This is clearly not possible in an actual execution of Jigsaiwce
iGoodlock does not take the happens-before relation betteei
acquires and releases into account, it reports these sigutliead-
locks. For the rest of the cycles reported by iGoodlock, weoa
say with reasonable confidence if they are false warningétloey

are real deadlocks that were missed tyADLOCKFUZZER.

6. Related Work

We have already compared our proposed technique with devera
existing techniques for detecting deadlocks in multi-tcied pro-
grams. In this section, we discuss several other relateshappes,
and elaborate on some that we have previously mentioned.

DeaDLOCKFUzzERIs part of theactive testing frameword 6]
that we have earlier developed for finding real races [25] readl
atomicity violations [23]. We proposedAREFUZZER[25] which
uses an active randomized scheduler to confirm race conslitio
with high probability. RRcEFUZzZERONly uses statement locations
to identify races and does not use object abstraction oregbnt
information to increase the probability of race detectibg shown
in Section 5.2, simple location information is not good egtofor
creating real deadlocks with high probability.

Recently, several random testing techniques have been pro-
posed [8, 26] that introduce noise (usipgel d, sl eep, wai t
(with timeout)) to a program execution to increase the iy of
the exhibition of a synchronization bug. Although thesdtégues
have successfully detected bugs in many programs, they dave
limitation. These techniques are not systematic as theitpréa
sl eep(),yield(),priority() can only advise the sched-
uler to make a thread switch, but cannot force a thread switsh
such they cannot pause a thread as long as required to cneste a
deadlock.

More recently, a few techniques have been proposed to con-
firm potential bugs in concurrent programs using randonintgst
Havelund et al. [3] uses a directed scheduler to confirm that-a
tential deadlock cycle could lead to a real deadlock. Howekiey
assume that the thread and object identifiers do not chamgesac
executions. Similarly, ConTest [22] uses the idea of inicdg
noise to increase the probability of the occurrence of aldekdit
records potential deadlocks using a Goodlock algorithmchieck
whether a potential deadlock can actually occur, it intaedunoise
during program execution to increase the probability ofilgition
of the deadlock. Our work differs from ConTest in the follogi
ways. ConTest uses only locations in the program to idehdiiys.
We use context information and object abstractions to ifietiite
run-time threads and locks involved in the deadlocks; floeegour
abstractions give more precise information about run-tijects.
Moreover, we explicitly control the thread scheduler toateethe
potential deadlocks, instead of adding timing noise to mogex-
ecution. DEADLOCKFUZZER, being explicit in controlling sched-
uler and in identifying objects across executions, fourad dead-
locks in large benchmarks with high probability.

A couple of techniques have been proposed to prevent dead-
locks from happening during program execution, and to recov
from deadlocks during execution. When a buggy program égscu
and deadlocks, Dimmunix [17] records the deadlock patt@cm:
ing program execution, it tries to prevent the occurrencanyf of

the deadlock patterns that it has previously observed. Bikdéb-
poses to recover programs from software failures, inclydiead-
locks, by rolling them back to a recent checkpoint, and recasing
the programs in a modified environment.

7. Conclusion

Existing techniques for deadlock detection, based orcsaatil dy-
namic analysis, could predict potential deadlocks, buictoot
verify if they were real deadlocks. Going through all of thegrn-
ings and reasoning about them manually could be time comgumi
DeEADLOCKFUZZER automates such verification—if a real dead-
lock is created by BADLOCKFUZZER, the developer no longer
needs to verify the deadlock manually. HoweverzADLOCK-
FuzzeRris incomplete—if a deadlock is not confirmed to be real
by DEADLOCKFUZZER, the developer cannot ignore the deadlock.
Nevertheless, BADLOCKFUzZzER has managed to find all pre-
viously known deadlocks in large benchmarks and it has disco
ered previously unknown deadlocks. We believe thanBLOCK-
Fuzzeris an indispensable and practical tool that complements
both static and predictive dynamic analysis.

Acknowledgments

We would like to thank the anonymous reviewers for their able
comments. This research was supported in part by a geneifbus g
from Intel, by Microsoft and Intel funding (award #2008046By
matching funding by U.C. Discovery (award #DIG07-10227d a
by NSF Grant CNS-0720906.

References

[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potehti
deadlocks with static analysis and runtime monitoring.Pémallel
and Distributed Systems: Testing and Debugging 2Q085.

[2] C. Artho and A. Biere. Applying static analysis to largeale,
multi-threaded Java programs. Pmoceedings of the 13th Australian
Software Engineering Conference (ASWEC,@Hges 68-75, 2001.

[3] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Maunie
Confirmation of deadlock potentials detected by runtimdyais
In PADTAD’06 pages 41-50, 2006.

[4] S. Bensalem and K. Havelund. Scalable dynamic deadlaekysis
of multi-threaded programs. IRarallel and Distributed Systems:
Testing and Debugging 2005 (PADTAD’02P05.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types fdiesa
programming: preventing data races and deadlocksl7th ACM
SIGPLAN Conference on Object-Oriented Programming, Syste
Languages, and Applicationpages 211-230, 2002.

[6] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and Nh&in
Concurrent software verification with states, events, agattbcks.
Formal Aspects of Computing7(4):461-483, 2005.

[7] C. Demartini, R. losif, and R. Sisto. A deadlock detegtimol
for concurrent java programsSoftware - Practice and Experience
29(7):577-603, 1999.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, , and S. Ur.lfitreaded
Java program test generatioli8M Systems Journa#t1(1):111-125,
2002.

[9] D. R. Engler and K. Ashcraft. Racerx: effective, statetettion of
race conditions and deadlocks.1fith ACM Symposium on Operating
Systems Principles (SOSPBpges 237-252, 2003.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, B. Saxe,
and R. Stata. Extended static checking for java. PUDI '02:
Proceedings of the ACM SIGPLAN 2002 Conference on Prograghmi
language design and implementatigrages 234-245. ACM, 2002.

[11] P. Godefroid. Model checking for programming languagsing
verisoft. In 24th Symposium on Principles of Programming
Languagespages 174-186, 1997.

[12] J. Harrow. Runtime checking of multithreaded applwag with
visual threads. Ir7th International SPIN Workshop on Model
Checking and Software Verificatioppages 331-342, 2000.

[13] K. Havelund. Using runtime analysis to guide model &g of java
programs. In7th International SPIN Workshop on Model Checking
and Software Verificatigrpages 245-264, 2000.

[14] K. Havelund and T. Pressburger. Model Checking Javafros
using Java PathFindemt. Journal on Software Tools for Technology
Transfer 2(4):366—381, 2000.

[15] G. Holzmann. The Spin model checkelEEE Transactions on
Software Engineering23(5):279-295, 1997.

[16] P. Joshi, M. Naik, C.-S. Park, and K. Sen. An extensildéva
testing framework for concurrent programs. Amst International
Conference on Computer Aided Verification (CAV;@%cture Notes
in Computer Science. Springer, 2009.

[17] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deédloc
immunity: Enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Symposium on Operating System
Design and Implementation (OSDI'Q&008.

[18] L. Lamport. Time, clocks, and the ordering of events iistributed
system.Commun. ACM21(7):558-565, 1978.

[19] S. Masticola.Static detection of deadlocks in polynomial tinthD
thesis, Rutgers University, 1993.

[20] A. Milanova, A. Rountev, and B. Ryder. Parameterizedecb
sensitivity for points-to analysis for Java@ACM Transactions on
Software Engineering and Methodolody4(1):1-41, Jan. 2005.

[21] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective stat@adlock
detection. I31st International Conference on Software Engineering
(ICSE’'09) IEEE, 2009.

[22] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: frexhibiting
to healing. In8th Workshop on Runtime Verificatiad2008.

[23] C.-S. Park and K. Sen. Randomized active atomicityatioh
detection in concurrent programs. 16th International Symposium
on Foundations of Software Engineering (FSE'08EM, 2008.

[24] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: trgdiimgs as
allergies—a safe method to survive software failuresSGSP '05:
Proceedings of the twentieth ACM symposium on Operatingrsgs
principles pages 235-248. ACM, 2005.

[25] K. Sen. Race directed random testing of concurrent farng. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08)2008.

[26] S. D. Stoller. Testing concurrent Java programs usamgiomized
scheduling. InNorkshop on Runtime Verification (RV'02plume 70
of ENTCS 2002.

[27] C. von Praun.Detecting Synchronization Defects in Multi-Threaded
Object-Oriented ProgramsPhD thesis, Swiss Federal Institute of
Technology, Zurich, 2004.

[28] C. von Praun and T. R. Gross. Object race detectionl6th ACM
SIGPLAN conference on Object oriented programming, system
languages, and applications (OOPSI Axges 70-82. ACM, 2001.

[29] A. Williams, W. Thies, and M. Ernst. Static deadlock efgtton for
Java libraries. IFECOOP 2005 — 19th European Conference on
Object-Oriented Programming (ECOOP’Q%ages 602—629, 2005.

[30] B. Xin, W. N. Sumner, and X. Zhang. Efficient program exion
indexing. INACM SIGPLAN conference on Programming language
design and implementatippages 238-248, 2008.

